Heat pumps for nearly Zero Energy Buildings – Design and integration

Prof. Carsten Wemhoener
WPP Symposium, Gent, 10.10.2018
DEFINITION “nearly Zero Energy Building” (nZEB)

- Means a building that has a **very high energy performance**
- **Nearly zero or very low energy amount** should be covered to a **very significant extent** by energy from renewable sources, including renewable energy **produced on-site or nearby**
- Currently no uniform definition of nZEB, neither in politics nor in the market
- Nevertheless ambitious time schedule for the introduction of nZEB in the EU

![Time Schedule Diagram](image-url)
State of definition nZEB in EU member states

- **nZEB Definition in the EU**
 - EU member states have a definition of nZEB
 - But current definitions vary regarding criteria and metrics as well as limits
 - Some EU MS aim at more ambitious target than nZEB
 - NL: Net-Zero Energy Buildings
 - UK: Zero Carbon Buildings
 - DK and FR: Plus Energy Buildings
 - DE: Climate Neutral Buildings

Source: JRC, EU, 2016
Project structure IEA HPT Annex 49

- **Task 1: Update on definitions and heat pump applications**
 - Definition of nZEB in participating countries
 - Conclusions for system configurations and design

- **Task 2: System integration**
 - Evaluation of integration options (storage, ground, building envelope)
 - Integration of nZEB with heat pumps into neighbourhoods, energy systems and grids

- **Task 3: Prototype development and field monitoring**
 - Development of integrated heat pump prototypes
 - Field monitoring of new and existing nZEB with heat pump

- **Task 4: Design and control of heat pumps for nZEB**
 - Design criteria regarding performance, cost and demand response
 - Controls for improved self-consumption and grid-supportive operation

Source: Viridén, 2sol, ORNL, IGS, FhG-ISE
Participating countries and institutions Annex 49

- **AT:** Unit Energy efficient building Uni Innsbruck, AIT, IWT of TU Graz
- **BE:** Aero Thermo Mechanics, Free Univ. of Brussels
- **CH:** IET of the UAS Rapperswil (Operating Agent)
- **DE:** TH Nürnberg, TEB GmbH, IGS/TU Braunschweig
- **EE:** Tallinn Univ. of Technology
- **NO:** SINTEF Building Research, NTNU, COWI, Enova SF
- **SE:** RISE, Swedish manufacturers
- **UK:** Glen Dimplex
- **US:** ORNL, CEEE Uni Maryland, NIST
Contribution to Task 2 – Integration options for heat pumps in nZEB

- **Contributions to Task 2: Integration of heat pumps**
 - **AT:** Simulation of two passive MFH with heat pump, solar PV and solar thermal collectors
 - **BE:** *Evaluation of waste water as heat source for large nZEB*
 - **CH:** Integration of heat pumps and solar technologies
 - **DE:** *Storage integration and control for group of terraced NZEB dwellings*
 - **EE:** Integration of heat pumps and ground
 - **SE:** Comparison of system configurations acc. to Swedish definitions
 - **UK:** Investigation of building technology for nZEB with building company
 - **US:** Simulation of Net Zero Energy Residential Testing Facility (NZERTF)
Annex 49 Task 2 – Integration of waste water as heat source

- **Contribution of Belgium to Task 2**
 - Integration of waste water as heat source for heat pumps in larger nZEB
 - Retrofitting of sewers with heat exchangers for heat source application
 - Evaluation of temperature levels
 - Evaluation of volume flow rates
 - Evaluation of the technology in large demonstrator in Uccle

![Image of a tunnel and building](image)

![Graph showing sewer flow vs. time of day](image)
Annex 49 Task 2/3/4 – Design and integration of NZEB

- **Project HerzoBase**
 - 8 terraced houses
 - SH: 8.9 kWh/(m²a), 22.7 kW
 - SC: 25.6 kWh/(m²a), 52 kW
 - DHW: 16.9 kWh/(m²a)
 - Two modulating GS-HP with storage
 - Distribution grid at low temperature level
 - Decentralised DHW storages (200 l) with 8 booster HP
 - Solar PV installation (98 kW_p, 66 MWh/a) and batteries designed for plus energy
 - Control concept of heat pumps and storage to increase self-consumption and reduce grid interaction by grid-supportive operation
Annex 49 Task 2/3/4 – Design and integration of NZEB

- Interim evaluation of PV self-consumption and grid interaction

PV self-consumption

<table>
<thead>
<tr>
<th>Direct consumption</th>
<th>Battery feed</th>
<th>Grid feed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy in MWh</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 21 %</td>
<td>- 10 %</td>
</tr>
<tr>
<td></td>
<td>- 11 %</td>
<td></td>
</tr>
</tbody>
</table>

Grid consumption

- Grid consumption without DMS
- Grid consumption with DMS

Load peak reduction of 24 %
Contribution to Task 3 – Monitoring of NZEB

Contributions to Task 3: Prototype developments and field monitoring

- **AT**: Field monitoring of two passive MFH with heat pump and solar PV
- **BE**: Field monitoring of Belgian nZEB
- **CH**: Field monitoring of plus energy office with ground-source HP and PV on roof and façade
- **DE**: Monitoring of 3 nZEB (SFH, MFH, educational building)
- **NO**: Monitoring of residential and non-residential buildings
- **SE**: Prototype development and testing in twin houses
- **UK**: Monitoring of building technology for nZEB
- **US**: Monitoring of IHP prototypes in different applications
Annex 49 Task 3 – Monitoring of nZEB

- Monitoring of NZEB with mixed use
 - 617 m² commercial (beauty salon, pharmacy)
 - 616 m² office and
 - 1521 m² multi-family residential use

- Building envelope
 - U values wall 0.16 /roof 0.12/window 0.92 W/(m²K)
 - Solar PV system 74 kW_p (roof 26 kW_p façade 48 kW_p)

- Ground-source heat pump
 - for space heating, cooling and DHW production

- Evaluations
 - Yield of roof- and façade solar PV system
 - Performance of HP for operation modes
 - Free-cooling fraction and performance
 - Load match of produced/used electricity
 - Seasonal balance of ground-source HP
Annex 49 Task 3 – Monitoring of nZEB

- **Results heat pump**
 - High heat pump performance
 - SH 4.9 / DHW 3.1 / SC 5.9; overall 5.2
 - High free cooling fraction
 - All recooling energy is recovered for DHW and regeneration of the ground, no recooler installed

- **Results solar PV-system**
 - Roof yield as expected 928 kWh/kW_p
 - Façade yield below expectation
 - 490/262/137 kWh/kW_p at south/west/east facade

- **nZEB Balance**
 - Balance for SH, DHW and SC met
 - Balance including ventilation slightly missed
 - Balance building technology could be kept with higher PV yield in the façade
Contribution to Task 4 – Design and control

- **Contributions to Task 4: Design and control for heat pumps for nZEB**
 - **BE**: Design for modular nZEB dwelling
 - **CH**: Design for heat pumps, ground and integrated solar components
 - **DE**: Heat pump control for smart grid, *design recommendations for storage integration*
 - **EE**: Design guidelines for heat pumps in nZEB
 - **NO**: Design/control for smart heat pumps
 - **SE**: Design and operation of capacity controlled heat pumps
 - **UK**: Design and control of building technology for nZEB
 - **US**: Design evaluation based on testing in NZERTF
Conclusion

- **Introduction of nZEB**
 - Tight time schedule for the introduction of nZEB in the EU
 - Different definitions in the EU member countries
 - North-America and Japan also declared nZEB as future building requirement

- **All electric buildings are an archetype solution for nZEB**
 - Buildings with heat pump and solar PV are a standard system to reach nZEB

- **Heat pumps for the application in nZEB**
 - Heat pumps are high performance generators in nZEB operating conditions
 - High performance of heat pumps reduces necessary energy production on-site to keep the balance
 - Heat pumps can cover different buildings services with one generator
 - Heat pumps are among the main electricity consumers and enable load management for optimised self consumption of on-site electricity
Acknowledgement

- The author thanks
 - The Swiss Federal Office of Energy for the advising and funding of the IEA HPT Annex 49 as well as the national contributions
 - The participants of the IEA HPT Annex 49 for their contributions to the Annex and the good collaboration